Observing Gravity Waves and Drag from Satellite The Search for Waves at the Limits of Resolution

Uncertainty in Wave-driving of Brewer-Dobson Transport

Butchart 2014:

 Different wave formulas for driving stratospheric transport circulation in CCMs

Non-orographic GWs
Orographic GWs
Resolved waves

Effect of Gravity Wave Drag on Ozone Variability

Garcia et al. (2017): WACCM simulations

- Artificially doubled orographic gravity wave drag in SH only (x)
- Corrected SH cold-pole problem for improved O_3 observations (\square)

Gravity Wave Momentum Flux and Drag

Parameterization in global models

$$\overrightarrow{\text{Drag}} = -\rho^{-1} d(f\overrightarrow{lux})/dz$$

Momentum Flux from IR or microwave temperature observations requires 3D knowledge of the wavelengths, propagation, and amplitudes:

$$\overrightarrow{\mathsf{Flux}} = \frac{1}{2} \varrho \, \frac{\overrightarrow{k_h}}{m} \left(\frac{g}{N} \right)^2 \left(\frac{\hat{T}}{T} \right)^2$$

Gravity Waves from Satellite

Gravity Waves & Momentum Flux from HIRDLS

Post-launch sampling advantageous

for gravity wave studies:

- Single azimuth
- ~100 km spacing
- 64°S 80°N
- $\sim 1 \text{ km } \Lambda_7$

Global gravity wave observations used in a variety of applications e.g.:

- Wright & Gille 2011: Monsoon precipitation sources
- France et al. 2012: Elevated stratopause dynamics
- Ern et al. 2011; Wright et al. 2011: Satellite intercomparisons
- Wright & Hindley 2018: Reanalysis intercomparison
- Wright 2019: Tropical cyclone sources

Comparison of Gravity Waves in Observations and Models

Absolute gravity wave momentum flux [Geller et al. 2013]

Key Conclusions:

- 1. High resolution models show similar global patterns to observations.
- 2. Parameterized GW fluxes are all very similar. (constrained by necessary drag on the circulation)
- 3. Observations are lowbiased due to sampling limits (2-5x?)

Gravity Waves from HIRDLS

Need "3D" information off the measurement track to correct for this low bias in the momentum fluxes

- HIRDLS has best coverage and resolution in lower stratosphere.
- Data is limited to a "2D" approach due to the satellite sampling pattern.

Combining GPS-RO and HIRDLS

- Find neighboring GPS Radio Occultation temperature profiles
- Combine with nearest two HIRDLS profiles
- Solve for the true direction of propagation using the triad of profiles

$$\delta = \arctan\left(\frac{\lambda_2 \cos \theta_2 - \lambda_1 \cos \theta_1}{\lambda_1 \sin \theta_1 - \lambda_2 \sin \theta_2}\right)$$

Zonal-mean, annual mean momentum flux vs latitude

Results depend on criteria defining "close" profiles.

Distributions of Horizontal Wavelength and Momentum Flux

2D = HIRDLS-only 3D = HIRDLS+COSMIC

Mean absolute momentum flux increases by a factor of 3.7:

1.7 mPa \rightarrow 6.4 mPa

New global average agrees better with models in Geller et al. (2013)

AIRS: Strong wave signals near the limits of horizontal resolution

Waves come and go from day-to-day: Stratospheric drag?

Wind effects on Vertical Wavelength and Visibility

m = N/U

MERRA-2 Wind Profiles

AIRS
Brightness
Temperature
Perturbations

Waves invisible in AIRS because of weak winds and short vertical wavelengths

HIRDLS and
MERRA-2 show
waves with vertical
wavelengths
~10-12km
(too short for AIRS)

Waves now **visible** in AIRS because of strong winds and longer vertical wavelengths

Wright et al. 2016: Combines AIRS and MLS

Limited to waves that are observed in *both* datasets, which means the coarse vertical resolution of AIRS **and** coarse horizontal resolution of MLS.

Gives 3D into in SH winter conditions with strong winds = long vertical wavelengths

Gravity Wave Resolving "Replay" Simulations

Replay = Very high-resolution GEOS simulations with large scales > 700km relaxed to MERRA-2 reanalyzed fields.

Summary & Future Directions

Limits of single-satellite observations:

- Each covers only a portion of the wave spectrum
- Can't infer drag from missing waves due to observational filter effect

Combining different satellite observation methods:

- Useful for obtaining more of the 3-d information → More accurate fluxes
- Still limited by observational filters → Still can't infer drag

Summary & Future Directions

Limits of single-satellite observations:

- Each covers only a portion of the wave spectrum
- Can't infer drag from missing waves due to observational filter effect

Combining different satellite observation methods:

- Useful for obtaining more of the 3-d information → More accurate fluxes
- Still limited by observational filters → Still can't infer drag

Future Directions:

- High-resolution "Replay" type models: Can directly validate the gravity waves with satellite observations and derive gravity wave drag directly from these models?
- New 3D high resolution observations? → ALICE!
- Using tracer observations to infer wave breaking and mixing?